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Abstract. Nuclear matter properties are calculated in the relativistic mean-field theory by using a number
of different parameter sets. The result shows that the volume energy a1 and the symmetry energy J are
around the acceptable values 16MeV and 30MeV, respectively; the incompressibility K0 is unacceptably
high in the linear model, but assumes reasonable value if nonlinear terms are included; the density symmetry
L is around 100MeV for most parameter sets, and the symmetry incompressibility Ks has positive sign
which is opposite to expectations based on the nonrelativistic model. In almost all parameter sets there
exists a critical point (ρc, δc), where the minimum and the maximum of the equation of state are coincident
and the incompressibility equals zero, falling into ranges 0.014 fm−3< ρc < 0.039 fm−3 and 0.74 < δc ≤ 0.95;
for a few parameter sets there is no critical point and the pure neutron matter is predicted to be bound.
The maximum mass MNS of neutron stars is predicted in the range 2.45M� ≤ MNS ≤ 3.26M�, the
corresponding neutron star radius RNS is in the range 12.2 km≤ RNS ≤ 15.1 km.

PACS. 21.65.+f Nuclear matter – 24.10.Jv Relativistic models – 26.60.+c Nuclear matter aspects of
neutron stars

1 Introduction

Ground-state nuclear matter properties are specified by
the nuclear matter equation of state e(ρN, δ) which is sim-
ply the energy per nucleon of nuclear matter given as a
function of nucleon density ρN and relative neutron excess
δ = (ρn − ρp)/ρN. This equation of state is a fundamen-
tal quantity in theories of neutron stars and supernova
explosions, as well as in theories of nucleus-nucleus colli-
sions at energies where nuclear compressibility comes into
play [1]. The main measured quantities which can pro-
vide information about equation of state are the binding
energies and other data from finite nuclei. As the finite nu-
clei are in states near the nuclear matter standard state
(ρN = ρ0, δ = 0), which is defined as the equilibrium state
of symmetric nuclear matter with minimum energy per
nucleon and called also the normal state, our actual knowl-
edge of nuclear matter is mainly about nuclear matter at
state close to the point (ρ0, 0). In this case, the equation
of state can be written approximately as [2,3]

e(ρN, δ) = −a1 +
1
18

(
K0 +Ksδ

2
)(ρN − ρ0

ρ0

)2

+
[
J +

L

3

(
ρN − ρ0

ρ0

)]
δ2, (1)
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which is specified by the standard density ρ0, volume en-
ergy a1, symmetry energy J , incompressibility K0, den-
sity symmetry L and symmetry incompressibility Ks. The
most interesting quantity for supernova explosion calcu-
lation is the nuclear incompressibility K0 which dictates
the balance between gravity and internal pressure of the
stellar system, while the most interesting quantities for
heavy-ion collision studies are the nuclear incompressibil-
ity K0 and the symmetry incompressibility Ks which in-
fluence the side-flow effects and the isotopic distributions
of the collisions, respectively.

There is no direct experimental measurement on these
quantities. They can be determined only from data fit
based on some specific nuclear model. Therefore, our ac-
tual knowledge about these quantities is essentially model
dependent. Nowadays the quantities which are known with
reasonable precision are a1, J and K0, being the last two
still under active investigation. One of the most sophis-
ticated data fit is given by the nonrelativistic Thomas-
Fermi statistical model of nuclei with Myers-Swiatecki
phenomenological nucleon-nucleon interaction [4]. It is a
fit to 1654 ground-state masses of nuclei with N,Z ≥ 8,
together with a constraint that ensures agreement with
measured values of the nuclear surface diffuseness, giving
the root-mean-square mass deviation equal to 0.655 MeV.
The data fits based on Skyrme nucleon-nucleon interac-
tions give comparable results [3], whereas a model inde-
pendent but approximate data fit also gives a1, K0, J and



454 The European Physical Journal A

L very close to that obtained by the before-mentioned
data fit [5,6].

As the σ-ω-ρ model of the relativistic mean-field the-
ory is used widely to investigate various nuclear phenom-
ena with success [7–10], it is interesting to calculate these
nuclear matter quantities within this model by using the
available parameter sets, to compare with those obtained
by the nonrelativistic model. In addition, as these parame-
ters are determined by nuclear ground-state properties, it
is also interesting to see what the σ-ω-ρ model can predict
for the nuclear system under extreme conditions of density
and asymmetry. In this case, the most interesting quan-
tities are the location em = e(ρm, δ) of the minimum of
the equation of state for given asymmetry δ, and the gen-
eralized incompressibility Km = K(ρm, δ) of the nuclear
matter at this state [11]. Another interesting quantity is
the maximum mass of neutron stars MNS calculated by
the equation of state for neutron matter with δ = 1. Ac-
tually, to predict these properties of nuclear matter under
extreme conditions is just one of the main goals in devel-
oping a relativistic mean-field theory [9].

The purpose of this paper is to make the above-
mentioned calculation in comparing with results obtained
by the nonrelativistic model. Section 2 presents the for-
malism and formulas used in this calculation. Section 3
addresses a numerical analysis on linear σ-ω-ρ model of
the relativistic mean-field theory. The standard nuclear
matter properties calculated from a number of parame-
ter sets are given in section 4, and the prediction for cold
nuclear matter under extreme conditions is made in sec-
tion 5. Section 6 gives the summary. Appendix A displays
functions Fm(x) and fm(x) which are useful in the ana-
lytical expressions as well as in the numerical calculations.
The Bjorken-Drell convention for four-vector [12] and the
natural units with h̄ = c = 1 are used.

2 Formalism

The σ-ω-ρ model of the relativistic mean-field theory is
specified by the following Lagrangian density [9]:

L = ψ
[
γµ

(
i∂µ − gωω

µ − gρτ · bµ
) − (M − gσφ)

]
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+
1
2
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where Fµν = ∂µων − ∂νωµ, Bµν = ∂µbν − ∂νbµ, ψ, φ,
ω and bµ are the nucleon, σ-, ω- and ρ-meson fields with
masses M , mσ, mω and mρ, respectively, while gσ, gω and
gρ are the respective coupling constants; b, c and c3 are
the nonlinear term coefficients, and τ are isospin matrices.
The nuclear matter equation of state derived from this La-
grangian density can be expressed in terms of the nuclear

energy density E as e = E/ρN −M , and

E = Ek + Eσ + Eω + Eρ, (3)
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where kp and kn are the proton and neutron Fermi mo-
menta, respectively,

ξ =
M∗

M
= 1 − gσ

M
φ, (8)

Ci = gi
M

mi
, i = σ, ω, ρ, (9)

and the function Fm(x) is defined as (see appendix A for
details):

Fm(x) =
∫ x

0

dxx2m
√

1 + x2. (10)

The reduced effective nucleon mass ξ and thus the field
φ is determined by

(1 − ξ) + bC2
σ(1 − ξ)2 + cC2
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σ

π2
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∑
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f1(ki/ξM), (11)

and the field ω0 by

ω0 =
CωρN

Mmω

1
1 + c3ω2

0/m
2
ω

. (12)

Knowing the equation of state, the following formulas
for pressure p and generalized incompressibilityK [11] can
be obtained:

p = −E + ρN
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∂ρN

=

1
3
Ek − 1

3
Mξρs − Eσ + Eω − 1

2
c3ω

4
0 + Eρ, (13)
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In the previous equation where f ′m(x) = dfm(x)/dx, and
the function fm(x) is defined as (see appendix A for de-
tails)

fm(x) =
∫ x

0

dx
x2m

√
1 + x2

. (18)

At the standard state (ρ0, 0), the pressure should be
zero,

p(ρ0, 0) = 0, (19)

and

K0 = K(ρ0, 0) = 9
(
ρ2
N

∂2e

∂ρ2
N

)
0

. (20)

In addition, the following formulas can be derived:
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The subscript 0 in the above formulas stands for the stan-
dard state (ρ0, 0), and kF is the nucleon Fermi momentum
of standard nuclear matter which is related to standard
density ρ0 and nuclear radius constant r0 as

ρ0 =
1

4πr30/3
=

2k3
F

3π2
. (27)

Formula (21) is well-known in the literature [7]. It is
worthwhile to note that, for the linear model with b = c =
c3 = 0, the ρ-meson in the standard state is nonrelevant to
eqs. (3), (11) and (19). Thus the parameters Cσ and Cω are
the same both for model with or without ρ-meson, since
they are determined by standard density ρ0 and volume
energy a1. This point will be discussed more specifically
in the next section.

3 Determination of Cσ,Cω and Cρ in the
linear model

For the linear model, b = c = c3 = 0, the nuclear energy
density (3) in the standard state (ρ0, 0) is simplified as

E0 = 2
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F1(kF/ξ0M) +
M4

2C2
σ

(1 − ξ0)2 +
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2
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and eq. (11) determining the reduced effective nucleon
mass ξ becomes
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C2

σξ
3
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π2
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In addition, the equilibrium condition (19) and the expres-
sion of incompressibility (20) are reduced, respectively, to
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It can be seen from eqs. (28)–(32) that the relevant quan-
tities are kF, C2

σ, C2
ω and M . Note that ξ0 is determined

by eq. (29) and ρ0 is related to kF by eq. (27). There-
fore, as the measured nucleon mass can be taken for M ,
the composite parameters C2

σ and C2
ω can be determined

completely by the value e0 = e(ρ0, 0), by using eqs. (28)–
(30) together with E0 = (e0 +M)ρ0. The procedure is as
follows.

At the stable equilibrium point (ρ0, 0), an equation
involving e0, kF, ξ0 and Cσ can be obtained if eqs. (28)
and (30) are combined to cancel Cω. On the other hand,
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Fig. 1. Composite parameters C2
σ and C2

ω as a function of r0

for given a1 = 16MeV, in the linear σ-ω-ρ model.

Cσ can be solved as a function of kF and ξ0 from eq. (29).
Substituting this function of Cσ into the above-mentioned
equation, the following equation involving e0, kF and ξ0
can be derived

3
ξ0
f1(kF/ξ0M) + 2f2(kF/ξ0M)=(e0+M)

k3
F

ξ40M
4
. (33)

ξ0 can be calculated from this equation, if the location
(ρ0, e0) of stable equilibrium point is chosen as input data.
Having this ξ0 together with ρ0 and e0, Cσ can be cal-
culated from eq. (29), then Cω can be determined from
eq. (28) or (30). Finally, the incompressibility K0 can be
obtained from eq. (31). It can be shown easily that eq. (33)
is identical to eq. (22) of reference [9] which is originally
given in reference [13]. Numerically, ρ0 and thus kF can
be expressed in terms of the nuclear radius constant r0
as eq. (27), while e0 can be related to the nuclear volume
energy coefficient a1 as e0 = e(ρ0, 0) = −a1. The experi-
mentally acceptable values are [3]

r0 ≈ 1.14 fm, a1 ≈ 16 MeV. (34)

The numerical calculation shows that, in the ranges
1.05 fm ≤ r0 ≤ 1.25 fm and 15.5 MeV ≤ a1 ≤ 16.5 MeV,
the effective mass ξ ≈ 0.54 does not depend on the choice
of r0 and a1 sensitively. The composite parameters C2

σ

and C2
ω are sensitive to the choice of r0 but not of a1.

Figure 1 shows C2
σ and C2

ω as a function of r0 for given
a1 = 16 MeV. Figure 2 gives the nuclear matter incom-
pressibility K0 calculated by eq. (31) as a function of a1

for given r0 = 1.14 fm. It is not sensitive to the choice of
r0. Furthermore, fig. 2 shows that K0 is approximately a
linear function of a1, in agreement with what is obtained
in the macroscopic phenomenological approach to the nu-
clear matter [14].

In case of the Walecka model [15], Cρ = 0, other nu-
clear matter properties J , L and Ks can be calculated also

1 5 . 5 0 1 5 . 7 5 1 6 . 0 0 1 6 . 2 5 1 6 . 5 0
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Fig. 2. The nuclear matter incompressibility K0 calculated as
a function of a1 for given r0 = 1.14 fm, in the linear σ-ω-ρ
model.

from these Cσ and Cω by eqs. (21)–(26). The calculated
coefficients J , L and Ks are almost constant in the range
15.5 MeV ≤ a1 ≤ 16.5 MeV for given r0 = 1.14 fm,

J ≈ 20 MeV, L ≈ 70 MeV, Ks ≈ 88 MeV. (35)

On the other hand, these coefficients depend on the choice
of r0 weakly, for given a1.

In case ρ-meson is included also in the model, the com-
posite parameter Cρ can be determined by measured sym-
metry energy J through eq. (21). The inclusion of ρ-meson
contributes to the symmetry energy with an extra term Jρ

(eq. (23)) and to the density symmetry L with an extra
term 3Jρ, while keeping the other coefficients a1, K0 and
Ks unchanged. For symmetry incompressibility Ks, it can
be seen from eqs. (26) and (14) that the ρ-meson con-
tributes with a term −18Jρ to −6L and a term 18Jρ to
(1/2)∂2K/∂δ2|0, and these extra terms cancel each other.

4 Standard state nuclear matter properties

There are many parameter sets for the σ-ω-ρ model of
the relativistic mean-field theory in the literature, some
of them are listed in table 1, where L-W is taken from
the pioneering Walecka linear σ-ω model [15], L-HS from
the Horowitz-Serot linear σ-ω-ρ model [16], L1, L2 and L3
from Lee et al. [17], L-Z, NL-Z and NL-VT from Rufa et
al. [18], NL1 from Reinhard et al. [19], NL2 from Fink et
al. [20], NL3 and NL3-II from Lalazissis et al. [21], NLB,
NLC and NLD from Serot [8], NL-B1 and NL-B2 from
Boussy et al. [22,23], NL-RA from Rashdan [24], NL-SH
from Sharma et al. [25], TM1 and TM2 from Sugahara
and Toki [26]. Most of them are collected in Reinhard’s
review [10]. In table 1, g2 and g3 are defined, respectively,
as

g2 = Mbg3σ, g3 = cg4σ. (36)
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Table 1. Some parameter sets of the σ-ω-ρ model in the relativistic mean-field theory. See text for details.

Set M mσ mω mρ gσ gω gρ g2 g3 c3

L-W 939.0 550.000 783.000 763. 9.57269 11.67114 0.00000 0.00000 0.0000 0.0000
L-HS 939.0 520.000 783.000 770. 10.47026 13.79966 4.03814 0.00000 0.0000 0.0000
L1 938.0 550.000 783.000 763. 10.29990 12.59990 0.00000 0.00000 0.0000 0.0000
L2 938.0 546.940 780.000 763. 11.39720 14.24780 0.00000 0.00000 0.0000 0.0000
L3 938.0 492.260 780.000 763. 10.69200 14.87050 0.00000 0.00000 0.0000 0.0000
L-Z 938.9 551.310 780.000 763. 11.19330 13.82560 5.44415 0.00000 0.0000 0.0000
NL1 938.0 492.250 795.359 763. 10.13770 13.28460 4.97570 12.17240 −36.2646 0.0000
NL2 938.0 504.890 780.000 763. 9.11122 11.49280 5.38660 2.30404 13.7844 0.0000
NL3 939.0 508.194 782.501 763. 10.21700 12.86800 4.47400 10.43086 −28.8849 0.0000
NL3-II 939.0 507.680 781.869 763. 10.20200 12.85400 4.48000 10.39100 −28.9390 0.0000
NLB 939.0 510.000 783.000 770. 9.69588 12.58890 4.27200 2.02714 1.6667 0.0000
NL-B1 938.9 470.000 783.000 770. 8.75834 11.80520 3.75195 7.51446 −16.8112 0.0000
NL-B2 938.9 485.000 783.000 770. 9.72687 12.89370 3.52938 9.47080 −28.1254 0.0000
NLC 939.0 500.800 783.000 770. 9.75244 12.20370 4.32984 12.66960 −33.3333 0.0000
NLD 939.0 476.700 783.000 770. 8.26559 10.86600 4.49305 3.79970 8.3333 0.0000
NL-RA 939.0 515.000 782.600 763. 9.62661 11.90390 4.52418 8.06582 −16.3173 0.0000
NL-SH 939.0 526.059 783.000 763. 10.44400 12.94500 4.38300 6.90990 −15.8337 0.0000
NL-VT 938.9 483.420 780.000 763. 9.79084 12.65660 4.61319 13.16500 −38.1282 0.0000
NL-Z 938.9 488.670 780.000 763. 10.05530 12.90860 4.84944 13.50720 −40.2243 0.0000
TM1 938.0 511.198 783.000 770. 10.02890 12.61390 4.63220 7.23250 0.6183 71.3075
TM2 938.0 526.443 783.000 770. 11.46940 14.63770 4.67830 4.44400 4.6076 84.5318

It should be noted that some of these parameter sets
are given originally in values of Ci instead of gi, i = σ, ω,
ρ. In this case the values of gi given here are calculated
from Ci, mi and M by eq. (9). It should be noted also
that our gρ is only one half of that defined in reference [9].

As mainly nuclear matter properties are concerned in
the present calculation, the relevant parameters are only
C2

σ, C2
ω, C2

ρ , while the meson masses mσ, mω and mρ are
nonrelevant ones, in case of the linear model. However, in
nonlinear model the meson mass is able in some case to
influence the nuclear matter property. For example, the
ω-meson mass mω appears in eq. (12) and thus has effect
on nuclear matter property in the nonlinear model via the
term (ωµω

µ)2.
The standard nuclear matter properties related to

these parameter sets are shown in table 2, where all quan-
tities are given in MeV, except ρ0 which is in fm−3. In
the calculation of a1, K0, J , L and Ks, using formulas
given in section 2 and input parameters listed in table 1,
eqs. (11) and (19) should be solved simultaneously at first
for ξ0 and kF at the standard point. The calculation of
∂2K/∂δ2|0, in eq. (26) of Ks, is made numerically, as its
analytical expression is too complicated to be derived. The
simple numerical average among the nonlinear model sets
is given as the set 〈NL〉, and the Myers-Swiatecki’s re-
sult [4] is shown also as the set MS for comparison.

ρ0 and a1 give the location of nuclear matter standard
state. Most values of ρ0 given in the σ-ω-ρ model are lower
than that of Myers-Swiatecki’s, the later corresponds to
r0 = 1.140 fm and agrees with that obtained from elastic
electron scattering and muonic atom spectroscopy mea-
surements [27,28]. Most values of a1 given in the σ-ω-ρ
model are in the reasonable range around 16 MeV, ex-
cept those of L1, L2, L3, LZ and NL2 sets, which seem

too large. Since a1 is the leading term in the approximate
equation of state (1), it is the main parameter in any data
fit to nuclear masses. However, there is a big fluctuation
around 16 MeV, as can be seen from table 2.

K0 and J , the next terms to the leading a1 in the
approximate equation of state (1), are the fine tune in
the data fit to nuclear masses, as shown in the droplet
model of nuclei [29]. It can be seen from table 2 that
K0 given in the σ-ω-ρ model is much larger than that
of Myers-Swiatecki’s, while J is only about 2/3 of Myers-
Swiatecki’s, for the linear σ-ω model; J will be increased
if the ρ-meson is added also to the linear σ-ω model,
but K0 keeps the same value. This is an inherent char-
acter of linear σ-ω-ρ model, as has been shown generally
in last section. In this respect, the nonlinear terms are
needed in order to reduce the nuclear incompressibility
K0, as supported by the calculated results listed in ta-
ble 2. It is worthwhile to note that, even the value of K0

obtained from different nuclear measurements and astro-
physical observations are spread over a large range from
180 to 800 MeV [30], most expectations based on the non-
relativistic model are around 220 MeV [11].

Being terms of order higher than K0 and J in the ap-
proximate equation of state (1), L andKs belong to the su-
perfine tune in the data fit to nuclear masses. Even if most
values of L given in the σ-ω-ρmodel seem to be larger than
the acceptable one, they are still in the reasonable range
around 100 MeV. On the other hand, the values of Ks are
all positive whose sign is opposite to most expectations
based on the nonrelativistic model [1]. Experimentally, Ks

obtained from the isoscalar giant-monopole resonance en-
ergy is between −566 ± 1350 to 34 ± 159 MeV [31].
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Table 2. Standard nuclear matter properties given by the σ-ω-ρ model parameter sets listed in table 1. a1, K0, J , L and Ks

are in MeV, ρ0 in fm−3. See text for details.

Set ρ0 a1 K0 J L Ks

L-W 0.1937 15.75 545.6 22.11 74.5 74.8
L-HS 0.1485 15.75 546.8 34.98 115.5 93.4
L1 0.1766 18.52 625.6 21.68 75.6 81.8
L2 0.1417 16.78 578.5 19.07 68.8 97.4
L3 0.1344 18.24 624.5 18.86 69.5 102.1
L-Z 0.1494 17.07 586.3 48.84 157.9 94.2
NL1 0.1518 16.42 211.1 43.46 140.1 142.6
NL2 0.1456 17.03 399.4 43.86 129.7 20.1
NL3 0.1482 16.24 271.6 37.40 118.5 100.8
NL3-II 0.1491 16.26 271.7 37.70 119.7 103.3
NLB 0.1485 15.77 421.0 35.01 108.3 54.8
NL-B1 0.1625 15.79 280.4 33.04 102.5 76.1
NL-B2 0.1627 15.79 245.6 33.10 111.3 158.8
NLC 0.1485 15.77 224.4 35.02 108.0 76.8
NLD 0.1485 15.77 343.2 35.01 101.5 13.5
NL-RA 0.1570 16.25 320.5 38.90 119.1 62.0
NL-SH 0.1460 16.35 355.3 36.12 113.6 79.7
NL-VT 0.1530 16.09 172.8 39.73 126.9 130.0
NL-Z 0.1508 16.19 172.8 41.72 133.9 140.0
TM1 0.1452 16.26 281.2 36.89 110.8 33.5
TM2 0.1323 16.16 343.8 35.98 113.0 56.0
〈NL〉 0.1500 16.14 287.7 37.53 117.1 83.2
MS 0.1611 16.24 234.4 32.65 49.9 −147.1

5 Prediction for cold nuclear matter under
extreme conditions

The stability condition for the state at minimum of equa-
tion of state for given asymmetry δ is

p(ρm, δ) = 0. (37)

The solution of this equation for given δ gives the loca-
tion of the minimum ρm = ρm(δ). Knowing this location
ρm(δ), the minimum em = e(ρm, δ) and the generalized
incompressibility at this minimum Km(δ) = K(ρm, δ) can
be calculated. Furthermore, the critical point of the equa-
tion of state (ρc, δc) can be defined as the point where
the maximum and the minimum are coincident and thus
the curvature of e(ρ, δc) versus ρ equals zero. As the gen-
eralized incompressibility K(ρ, δ) is proportional to this
curvature, we have at the critical point

Km(δc) = K(ρc, δc) = 0. (38)

This equation together with (37) can be used to obtain
the critical point (ρc, δc).

Table 3 lists the calculated critical point (ρc, δc), the
corresponding effective nucleon mass M∗/M , the energy
per nucleon em as well as the generalized incompressibility
Km at the critical point. In case there is no critical point,
the corresponding quantities at the minimum point of the
pure neutron matter equation of state with δ = 1 are
listed. ρc is in fm−3 units, while em and Km are in MeV
units. The values given by the Myers-Swiatecki equation
of state [11] are also listed in the last row for comparison.

It can be seen that there is no critical point for parameter
sets LW, L1, L2, L3 and NL-B2. In these cases, there is
a minimum for the pure neutron matter equation of state
and the bound neutron matter is predicted. For other pa-
rameter sets, the neutron matter is an unbound gas sys-
tem. The predicted critical point (ρc, δc) is in the ranges
0.014 fm−3 < ρc ≤ 0.039 fm−3 and 0.74 < δc ≤ 0.95,
with the corresponding effective nucleon mass in the range
0.87 ≤M∗/M ≤ 0.95.

In addition, the predicted maximum mass MNS and
the corresponding radius RNS of neutron stars, calculated
by the Oppenheimer-Volkoff equation, using the σ-ω-ρ
model equation of state of the relativistic mean-field the-
ory with the above-mentioned parameter sets and δ = 1,
are also shown in table 3. The range of the maximum
mass is 2.45M� ≤ MNS ≤ 3.26M�, and the range of cor-
responding star radius is 12.2 km ≤ RNS ≤ 15.1 km.

Figure 3 gives some examples of ρm(δ), where the solid
curve from top to bottom in the middle range of δ corre-
sponds to L-W, L-HS, NL-SH, TM1, NLC, and NL1; the
dashed curve corresponds to Myers-Swiatecki’ result. One
source of deviation among these curves comes from the
difference in the origin of the curves: ρ0 = ρm(0). In cases
of L-W and L1 ρ0 is much higher but others are close or
lower than that of Myers-Swiatecki’s. However, even if all
the curves are rescaled to the same ρ0, there still exists
large deviation among these curves in the middle range
of δ.

Figure 4 plots some examples of em versus δ, where the
solid curve from left to right on the end of the curve corre-
sponds to L-HS, NL-SH, TM1, NL1, NLC, and L-W; the
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Table 3. Nuclear matter properties at the critical point (ρc, δc) or (ρm, 1), the maximum neutron star mass MNS and the
corresponding star radius RNS, calculated by the σ-ω-ρ model parameter sets listed in table 1. ρc is in fm−3, ec and Kc in MeV,
MNS in solar mass M� and RNS in km. Myers-Swiatecki’s values are listed in the last row for comparison. See text for details.

Set δc ρc M∗/M ec Kc MNS RNS

L-W 1.00 0.0987 0.766 1.93 77.8 2.60 12.2
L-HS 0.86 0.0392 0.872 2.75 0.0 3.08 14.6
L1 1.00 0.1034 0.718 -0.63 142.3 2.80 13.0
L2 1.00 0.0849 0.712 -1.04 138.4 3.13 14.4
L3 1.00 0.0847 0.688 -2.46 174.5 3.26 15.0
L-Z 0.75 0.0388 0.871 2.51 0.0 3.16 15.1
NL1 0.91 0.0150 0.951 1.43 0.0 2.96 14.2
NL2 0.81 0.0288 0.925 2.41 0.0 2.78 13.9
NL3 0.92 0.0182 0.943 1.62 0.0 2.91 13.9
NL3-II 0.92 0.0178 0.944 1.62 0.0 2.91 13.9
NLB 0.87 0.0327 0.906 2.43 0.0 2.87 13.8
NL-B1 0.95 0.0236 0.936 1.94 0.0 2.68 12.9
NL-B2 1.00 0.0212 0.934 1.75 1.8 2.87 13.5
NLC 0.95 0.0175 0.949 1.63 0.0 2.77 13.2
NLD 0.87 0.0302 0.929 2.29 0.0 2.60 13.0
NL-RA 0.87 0.0243 0.934 1.89 0.0 2.75 13.4
NL-SH 0.90 0.0235 0.927 1.90 0.0 2.93 14.1
NL-VT 0.95 0.0151 0.952 1.44 0.0 2.87 13.7
NL-Z 0.94 0.0144 0.953 1.39 0.0 2.92 13.9
TM1 0.90 0.0217 0.935 1.82 0.0 2.45 13.3
TM2 0.90 0.0217 0.918 1.83 0.0 2.73 14.4
MS 0.82 0.0304 1.10 0.0
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Fig. 3. Some examples of the location ρm(δ) of the σ-ω-ρ
model equation of state. The solid curves from top to bottom in
the middle range of δ correspond to L-W, L-HS, NL-SH, TM1,
NLC, and NL1, respectively. The dashed curve corresponds to
Myers-Swiatecki’s result.

dashed curve corresponds to Myers-Swiatecki’ result. All
curves are close each other in the low asymmetry region,
but L-W’s is significantly lower than others for δ > 0.2.

Figure 5 is the curve Km versus δ calculated by same
parameter sets as that of figs. 3 and 4. The solid curve

0.0 0.2 0.4 0.6 0.8 1.0

δ

- 20.0
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e m 
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Fig. 4. Some examples of the deep em × δ of the σ-ω-ρ model
equation of state. The solid curves from left to right on the
high δ range correspond to L-HS, NL-SH, TM1, NL1, NLC,
and L-W, respectively. The dashed curve corresponds to Myers-
Swiatecki’s result.

from top to bottom in the middle range of δ is by L-W,
L-HS, NL-SH, TM1, NLC, and NL1, and the dashed curve
is by Myers-Swiatecki. The diference between these curves
is obvious, even if NLC and NL1’s are close to each other
as well as close to Myers-Swiatecki’s.
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Fig. 5. The curve Km ×δ calculated by the same σ-ω-ρ model
parameter sets as shown in figs. 4 and 5. The solid curves from
top to bottom in the middle range of δ correspond to L-W, L-
HS, NL-SH, TM1, NLC, and NL1, respectively, and the dashed
curve corresponds to Myers-Swiatecki’s result.

6 Summary

In summary, the properties of nuclear matter at stan-
dard density ρ0 with equal neutron and proton densities,
ρn = ρp, are calculated at first in the relativistic mean-
field theory with a variety of parameter sets. The result
shows that the volume energy a1 and symmetry energy
J are around the acceptable value 16 MeV and 30 MeV
respectively, the incompressibility K0 is reasonable only
for nonlinear model while is unacceptably high for lin-
ear model, the density symmetry L is around 100MeV for
most parameter sets, and the symmetry incompressibil-
ity Ks has positive value whose sign is opposite to most
expectations based on the nonrelativistic model.

Secondly, the calculation shows that for most param-
eter sets there exists a critical point (ρc, δc), where the
minimum and the maximum of the equation of state
are coincident and the incompressibility equals zero, and
it falls into ranges 0.014 fm−3 < ρc < 0.039 fm−3 and
0.74 < δc ≤ 0.95; while for some parameter sets there
is no critical point and the pure neutron matter is bound.
The deviation among results calculated by different pa-
rameter sets is discussed. The maximum mass of neu-
tron stars is also calculated with results in the range
2.45M� ≤ MNS ≤ 3.26M�. It is worthwhile to note that
a more realistic calculation, by using a nuclear Thomas-
Fermi equation of state, gives a maximum mass of neutron
stars equal to 3.26M� [32]. The most of observational neu-
tron star masses are between 1.2–1.8M�.

As different parameter sets give results which deviate
significantly from one another, in order to extract from
them more reliable predictions for nuclear matter prop-
erties, more sophisticated data fit, especially the data fit
to larger number of nuclear masses and other measured

nuclear data is expected for the nonlinear σ-ω-ρ model of
relativistic mean-field theory.

Appendix A.

Functions Fm(x) and fm(x) defined below are useful in
the analytical expressions and numerical calculations of
the relativistic mean-field theory:

Fm(x) ≡
∫ x

0

dx · x2m
√

1 + x2, m ≥ 1, (A.1)

fm(x) ≡
∫ x

0

dx
x2m

√
1 + x2

, m ≥ 1. (A.2)

The following formulas can be obtained:

Fm(x) = fm(x) + fm+1(x), (A.3)

f ′m+1(x) = x2f ′m(x), (A.4)

F ′
m+1(x) = x2F ′

m(x), (A.5)

F ′
m(x) = (1 + x2)f ′m(x), (A.6)

fm(x) = xF ′
m−1(x) − (2m− 1)Fm−1(x), (A.7)

fm(x) = −xF ′
m(x) + 2(m+ 1)Fm(x). (A.8)

Some examples of Fm(x) and fm(x) are

F1(x)=
1
8

[
(1+2x2)x

√
1+x2+ln

(√
1+x2−x

)]
, (A.9)

f1(x) =
1
2

[
x
√

1 + x2 + ln
(√

1 + x2 − x
)]
, (A.10)

f2(x) = −3
8

[(
1 − 2

3
x2

)
x
√

1 + x2

+ ln
(√

1 + x2 − x
)]
. (A.11)

For x� 1, we have

Fm(x)=
x2m+1

2m+1
+

x2m+3

2(2m+3)
− x2m+5

8(2m+5)
+ . . . , (A.12)

fm(x)=
x2m+1

2m+1
− x2m+3

2(2m+3)
+

3x2m+5

8(2m+5)
+ . . . . (A.13)
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